Axial-flux Permanent-magnet Motor Design for Electric Vehicle Direct Drive Using Sizing Equation and Finite Element Analysis

نویسندگان

  • A. Mahmoudi
  • N. A. Rahim
  • H. W. Ping
چکیده

The design process of a double-sided slotted TORUS axialflux permanent-magnet (AFPM) motor suitable for direct drive of electric vehicle (EV) is presented. It used sizing equation and Finite Element Analysis (FEA). AFPM motor is a high-torque-density motor easily mounted compactly onto a vehicle wheel, fitting the wheel rim perfectly. A preliminary design is a double-sided slotted AFPM motor with 6 rotor poles for high torque-density and stable rotation. In determining the design requirements, a simple vehicle-dynamics model that evaluates vehicle performance through the typical cruising trip of an automobile was considered. To obtain, with the highest possible torque, the initial design parameters of the motor, AFPM’s fundamental theory and sizing equation were applied. Vector Field Opera-3D 14.0 commercial software ran the FEA of the motor design, evaluating and enhancing accuracy of the design parameters. Results of the FEA simulation were compared with those obtained from the sizing equation; at no-load condition, the flux density at every part of the motor agreed. The motor’s design meets all the requirements and limits of EV, and fits the shape and size of a classical-vehicle wheel rim. The design process is comprehensive and can be used for an arbitrary EV with an arbitrary cruising scenario.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

متن کامل

Optimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application

Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined...

متن کامل

Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor

Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...

متن کامل

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

متن کامل

Cogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique

Cogging torque reduction of axial flux permanent magnet brushless dc (PMBLDC) motor is an important issue which demands attention of machine designers during design process. This paper presents magnet notching technique to reduce cogging torque of axial flux PMBLDC motor designed for electric vehicle application. Reference axial flux PMBLDC motor of 250 W, 150 rpm is designed with 48 stator slo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011